Texture-Based Weed Classification Using Gabor Wavelets and Neural Network for Real-time Selective Herbicide Applications
نویسندگان
چکیده
A novel texture-based weed classification method was developed. The method comprised a low-level Gabor wavelets-based feature extraction algorithm and a high-level neural network-based pattern recognition algorithm. The design strategy simulated the function of the human visual system, which uses low-level receptors for early stage vision processing and high-level cognition for pattern recognition and image understanding. This model was specifically developed to classify images into broadleaf and grass categories for real-time selective herbicide application. The results showed that the method is capable of performing texture-based broadleaf and grass classification effectively and with 100 percent classification accuracy over 40 sample images with 20 samples from each class. Based on the elapsed time to do weed classification, the method meets real-time constraints.
منابع مشابه
Classification of Broadleaf and Grass Weeds Using Gabor Wavelets and an Artificial Neural Network
A texture–based weed classification method was developed. The method consisted of a low–level Gabor wavelets–based feature extraction algorithm and a high–level neural network–based pattern recognition algorithm. This classification method was specifically developed to explore the feasibility of classifying weed images into broadleaf and grass categories for spatially selective weed control. In...
متن کاملClassification of Weed species Using Artificial Neural Networks Based on Color Leaf Texture Feature
The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second ...
متن کاملAutomated weed classification with local pattern-based texture descriptors
In conventional cropping systems, removal of weed population extensively relies on the application of chemical herbicides. However, this practice should be minimized because of the adverse effects of herbicide applications on environment, human health, and other living organisms. In this context, if the distribution of broadleaf and grass weeds could be sensed locally with a machine vision syst...
متن کاملDevelopment and Evaluation of a Real Time Site-Specific Inter-Row Weed Management System
ABSTRACT- A real-time, site-specific, machine-vision based, inter-row patch herbicide application system was developed and evaluated. The image resolution was 640 × 480 pixels covering a total area of 350 mm x 240 mm of a field composed of four quadrants of 350 mm x 60 mm each. The image frames were processed by LabView® and MatLab®. The developed algorithm, based on weed coverage ratio and seg...
متن کاملWeed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000